
The discovery of RNA interference (RNAi) in the late 
1990s sparked a renaissance in our understanding of 
RNAs as regulatory molecules. A growing number  
of small RNA classes has since emerged from studies of 
eukaryotic organisms, and these RNAs can be approxi-
mately divided into two groups: small RNAs that engage 
RNAi-related machinery and those that do not. As yet, 
we know very little about many newly discovered groups 
of small RNAs, but our understanding of the biogenesis 
and biological functions of RNAi-related small RNA 
classes is growing rapidly.

Small RNAs that engage RNAi-related pathways share 
several characteristic features. They are mainly ~20–30 
nucleotides (nt) in length, have 5  phosphate groups 
and 3  hydroxyl (-OH) (although sometimes modified) 
termini, and they associate with specific members of 
a large protein family — the Argonautes. The precise 
combination of a small RNA with a particular Argonaute 
protein determines its biological function. Therefore, it 
is crucial that these very similar species are appropri-
ately sorted among closely related partners. Only then 
can the target specificity conferred on Argonaute pro-
teins by their small RNA guides enable their myriad 
important roles, which include the regulation of gene 
expression, modification of chromosome structure and 
protection from mobile elements. Conceptually, all small 
RNA-mediated regulatory events can be considered as 
the culmination of several consecutive steps: small RNA 
biogenesis, strand selection (in which dsRNA is the pre-
cursor), loading into Argonaute, target recognition and  
effector function.

The biogenesis of most small RNA classes, includ-
ing microRNAs (miRNAs) and many small interfering 
RNAs (siRNAs), requires the action of RNase III family 
proteins (reviewed in REFS 1–3). Some small RNA classes, 
including Piwi-interacting RNAs (piRNAs) and second-
ary siRNAs in worms, however, are not derived from 
dsRNA precursors and are produced through alterna-
tive biogenesis mechanisms independently of RNase III 
enzymes4–8.

Following their production, small RNAs are sorted 
to confer association with specific Argonaute family 
proteins, which function as the core of the RNA-induced 
silencing complex (RISC). Argonaute proteins can be clas-
sified into three subgroups according to their sequence 
relationships: the AGO subfamily, the Piwi subfamily and  
the worm-specific WAGO clade9–11. Piwi subfamily pro-
teins load small RNAs derived from single-stranded 
precursors (piRNAs) and AGO clade proteins usually 
associate with small RNA duplexes processed by RNase 
III endonucleases (miRNAs and siRNAs; reviewed in 
REFS 1,2). Small RNAs that occupy WAGO clade proteins 
are usually direct products of RNA synthesis6,7,9.

Mature RISC consists of a single-stranded small RNA 
bound to an Argonaute protein. As some small RNAs are 
generated as duplexes, only one strand (the guide strand) 
is retained and the other (passenger) strand is discarded 
during RISC assembly12–14. AGO clade proteins are gen-
erally loaded with small RNA duplexes before RISC 
maturation. Thus, it is of key importance to assemble 
RISC in a manner that ensures that the appropriate 
guide strand is selectively stabilized, as loading of the  
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RNase III protein
A member of a family  
of ribonucleases that  
process dsRNA, leaving 5  
monophosphates and 2-nt 3  
overhangs with hydroxyl ends. 
Drosha and Dicer are examples 
of such ribonucleases.

RNA-induced silencing 
complex
A regulatory multi-protein 
complex containing an 
Argonaute protein bound  
to a single-stranded small  
RNA that regulates gene 
expression through sequence 
complementarity between  
the guide RNA and the  
target transcript.
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Abstract | Small RNAs directly or indirectly impact nearly every biological process in 
eukaryotic cells. To perform their myriad roles, not only must precise small RNA species  
be generated, but they must also be loaded into specific effector complexes called 
RNA-induced silencing complexes (RISCs). Argonaute proteins form the core of RISCs 
and different members of this large family have specific expression patterns, protein 
binding partners and biochemical capabilities. In this Review, we explore the mechanisms 
that pair specific small RNA strands with their partner proteins, with an eye towards  
the substantial progress that has been recently made in understanding the sorting of the 
major small RNA classes — microRNAs (miRNAs) and small interfering RNAs (siRNAs) — 
in plants and animals.
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Guide strand
During RISC loading, one strand 
of an siRNA is selected and 
stabilized. This is termed the 
guide strand, and it confers 
target specificity. miRNA guide 
strands are termed miR strands.

Passenger strand
The non-incorporated strand 
of the siRNA duplex that is 
degraded during the assembly 
of RISC. Non-incorporated 
strands of miRNAs are called 
miR* strands.

Stem–loop structure
A region of dsRNA (stem) 
connected by an unpaired 
region (loop) in a single RNA 
molecule. This is a structure 
typical for miRNA precursors.

Mirtron
A miRNA that originates from a 
very short intron and is excised 
to form a pre-miRNA by the 
splicing machinery (and 
occasionally subsequent 
trimming), therefore bypassing 
the Drosha processing step.

passenger strand would obviously misdirect RISC 
towards inappropriate targets. Small RNAs guide mature 
RISC through complementary base pairing to its targets, 
with the most common outcome being target repression 
(reviewed in REFS 15–17).

The knowledge of the mechanisms that guide a par-
ticular small RNA strand into a specific Argonaute family 
member is crucial. It impacts our ability to predict the 
biological function of a small RNA and to effectively use 
small RNAs as experimental tools or therapeutics. This 
Review focuses on our understanding of small RNA sort-
ing in plants and animals. We consider biogenesis as a 
starting point as this affects the nature of small RNAs and, 
in some cases, the complexes which the small RNAs join. 
Next, we discuss the small RNA-intrinsic determinants of 
sorting, followed by RISC loading and maturation. Finally, 
we briefly cover the implications of sorting for Argonaute 
function. We do not extensively discuss the effector mech-
anisms of mature RISC, but instead refer the reader to 
several excellent recent reviews on this topic15–17.

Small RNA biogenesis
In effect, the first step of small RNA sorting is biogen-
esis, as this determines the small RNAs that are available 
for RISC loading. Moreover, the precise enzymes that 
liberate small RNAs from their precursor transcripts or 
generate them de novo seem to impact the choice of their 
ultimate Argonaute partner. Therefore, it is important 
to begin with an introduction to the varied mechanisms 
that can produce small RNAs.

Small RNA duplexes from partial or perfect dsRNA 
precursors are generated by RNase III family enzymes 
through sequential endonucleolytic cleavage events. 
These enzymes often partner with dsRNA binding 
domain (dsRBD) proteins, which serve to increase sub-
strate specificity and affinity, leading to increased activity.  
The resulting products are duplex ~20−24-nt small 
RNAs consisting of two strands (the guide or miR and 
passenger or miR* strands). These small RNAs feature 5  
monophosphates and 2-nt overhangs that have hydroxyl 
groups at their 3  termini.

Animal miRNA processing. miRNAs are ubiquitous in 
animal genomes and are often transcribed as separate 
coding units, many of which consist of polycistronic 
clusters containing multiple miRNAs. Some miRNAs 
are also present in introns and presumably arise from 
further processing of the excised introns of protein-
coding genes18. Most miRNAs are transcribed by DNA-
dependent RNA polymerase II (RNAPII) to generate a 
primary miRNA (pri-miRNA) containing a region of 
imperfect dsRNA, known as the stem–loop structure, that 
harbours the future mature miRNA19,20 (FIG. 1). Primary 
miRNA transcripts seem largely like the transcripts of 
protein-coding genes. They have 5  cap structures, polyA 
tails and may contain introns. The production of conven-
tional miRNAs from these precursors proceeds through 
two site-specific cleavage events. Processing likely begins 
with a dsRBD protein, Pasha/DiGeorge syndrome criti-
cal region gene 8 (DGCR8), binding to the pri-miRNA 
and recruiting the RNase III enzyme Drosha to form 

a multiprotein complex called the Microprocessor21–24. 
This complex recognizes the duplex character of the pri-
miRNA, although the precise RNA–protein interactions 
that select pri-miRNAs as Microprocessor substrates 
and how the cleavage site is determined by these inter-
actions are matters of ongoing work. The pri-miRNA 
is cleaved by Drosha to liberate a ~60–70-nt precursor 
miRNA (pre-miRNA) from the primary transcript25. The 
nuclear export protein Exportin 5 recognizes the 2-nt 
single-stranded 3  overhang of the pre-miRNA (char-
acteristic of RNase III-mediated cleavage) and actively 
transports it in a Ran–GTP-dependent manner to the 
cytoplasm26–28. Additional factors, including the nuclear 
export receptor Exportin 1 (XPO1), the cap-binding 
complex (CBC) and the Arabidopsis thaliana SERRATE 
homologue, ARSENITE-RESISTANCE PROTEIN 2 
(ARS2), were recently suggested to play a part in the 
transition from pri- to pre-miRNA29–31.

Once in the cytoplasm, the pre-miRNA is cleaved 
into a ~22–23-nt miRNA:miRNA* duplex by Dicer32–35. 
For this purpose, the sole mammalian Dicer partners 
with the dsRBD protein TAR RNA-binding protein 2  
(TARBP2, also known as TRBP)36,37, whereas the 
Drosophila melanogaster miRNA-generating Dicer 1 
(DCR1) similarly interacts with a specific isoform of 
its dsRBD protein partner Loquacious (LOQS-PB)38–42. 
Small RNA duplexes generated by Dicer (and its pro-
tein partner) exhibit 2-nt single-stranded 3  overhangs 
at both ends, a signature of RNase III cleavage.

Several unconventional miRNAs that are defined by 
their use of alternative maturation strategies have now 
been noted. For example, mirtrons have been found in 
flies and mammals43–45. Mirtrons bypass the Drosha 
processing step and instead use the splicing machin-
ery to generate pre-miRNAs. Mirtrons are very short 
introns and are excised, debranched and refolded into 
short stem–loop structures that mimic pre-miRNAs 
and are processed into mature miRNAs by Dicer. A 
few recently discovered mirtrons in flies are initially 
generated with extended 3  tails that must be resected 
by the exosome to form a pre-miRNA suitable for  
Dicer processing46.

miRNA biogenesis in plants. Plant miRNAs are tran-
scribed by RNAPII to yield capped and polyadenylated 
pri-miRNAs with local stem–loop structures that are 
potentially stabilized by the RNA-binding protein 
DAWDLE (DDL)47. Plant pri-miRNAs typically display 
greater diversity in the size and structure of their stem–
loops compared with their animal counterparts48. As plants 
lack a Drosha orthologue, pri-miRNAs are converted 
into mature miR:miR* duplexes by a single RNase III  
family enzyme, DICER-LIKE 1 (DCL1)48–51, which ful-
fils the functions of both Drosha and Dicer  (BOX 1). 
As in animals, Dicer is assisted by a dsRBD protein, in 
this case, HYPONASTIC LEAVES 1 (HYL1)52–54. HYL1 
and the zinc finger protein SERRATE promote accurate 
miRNA processing53,55–57. miRNA maturation is also 
aided by the nuclear cap-binding complex53,58,59, prob-
ably by facilitating the loading of miRNA-processing  
factors onto pri-miRNAs.
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Dicing
Refers to the cleavage events 
carried out by the RNase III 
family nuclease Dicer.

RNA-dependent RNA 
polymerase
An RNA polymerase that  
uses ssRNA as a template  
to synthesize dsRNA.

Maturation of plant miRNA duplexes often proceeds 
through several rounds of sequential Dicing from the base 
of a long stem–loop (BOX 1). Processed miRNA duplexes are 
modified by the methyltransferase HUA ENHANCER 1  
(HEN1)60–62. In contrast to its D. melanogaster homo-
logue, plant HEN1 is nuclear and adds methyl groups to 
the 3  ends of both strands of the miR:miR* duplex. This 
2 -O-methylation is thought to protect miRNAs from 
further modifications, such as 3  uridylation60,62, which 
mark single-stranded miRNAs for destruction by exonu-
cleases of the SMALL RNA-DEGRADING NUCLEASE 
(SDN) family63. This adaptation may be necessitated by 
the fact that plant miRNAs pair extensively with tar-
get mRNAs and cleave them, a process which in ani-
mals provides a trigger for small RNA destruction64. 
Following methylation by HEN1, miR:miR* duplexes 
are thought to be transported by an Exportin 5 homo-
logue, HASTY (HST), or through HST-independent 
mechanisms to the cytoplasm65, where sorting and RISC 
assembly takes place. However, the exact form of the 
exported cargo and the subcellular localization of plant 

RISC loading and maturation remain subjects of cur-
rent debate3. In this regard, a recent study proposed a 
model in which RISC is assembled in the nucleus and 
only mature AGO1–RISC containing a single-stranded 
miR can be exported to the cytoplasm66.

siRNAs of endogenous or exogenous origin. The first  
siRNAs were discovered in plants67. The earliest identified 
examples were derived from viral replication intermedi-
ates or complex interactions between transgene copies. 
By considering the commonalities between these origins, 
dsRNAs were indicated as the source of small RNAs. It 
is now clear that plants and animals produce a wide 
range of siRNAs. These vary in their biogenesis mecha-
nisms, but can be approximately divided into two classes, 
depending on whether they require RNA-dependent RNA 
polymerases (RdRPs) for their production.

siRNAs derived from dsRNAs. The process of convert-
ing dsRNA into small RNAs is perhaps currently best 
understood in D. melanogaster. Here, the experimental 

Figure 1 | MicroRNA biogenesis in Drosophila melanogaster. MicroRNAs (miRNAs) are generally transcribed by RNA 
polymerase II (RNAPII) to yield primary miRNAs (pri-miRNAs). pri-miRNAs are cropped in the nucleus by Drosha–Pasha 
complexes to release shorter precursor miRNAs (pre-miRNAs). miRNAs that reside within short introns of protein-coding 
genes are excised by the splicing machinery and are termed mirtrons. Following linearization of mirtron intermediates 
by the lariat-debranching enzyme, they fold into pre-miRNAs. Some 3 -tailed mirtrons undergo further trimming by the 
exosome. pre-miRNAs are transported to the cytoplasm by Exportin 5 (EXP5), where further processing takes place. 
Dicer 1 (DCR1), in collaboration with an isoform of its dsRNA binding domain protein partner Loquacious (LOQS-PB), 
liberates miR:miR* duplexes that dissociate from DCR1 for downstream sorting.
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introduction of long dsRNAs results in the production of 
exo-siRNAs that are ~21 nt in size (FIG. 2a). Long dsRNAs 
are processed into siRNA duplexes through sequential 
cleavage events by the RNase III protein Dicer 2 (DCR2) 

(REFS  68,69) in collaboration with its dsRBD co-factor,  
a particular Loquacious isoform, LOQS-PD42,70.  
Dicer 2 also interacts with another dsRBD protein 
R2D2, but only LOQS-PD enhances siRNA produc-
tion69,71. Recent studies indicate a role of R2D2 in loading 

siRNA duplexes into RISC (discussed below), suggesting 
that these two dsRBD proteins may have distinct and  
sequential functions71,72.

In flies, siRNAs also originate from numerous endog-
enous loci and were termed endogenous siRNAs (endo-
siRNAs)73–77. These can originate from RNA transcripts 
with extensive hairpin structures, from convergent tran-
scription units (similar to plant nat-siRNAs, see below) 
or from the annealing of sense and antisense RNAs from 

Box 1 | Plant microRNA-processing mechanisms

Plant microRNAs (miRNAs)  
are generally produced by 
sequential rounds of Dicing.  
This is necessitated by the lack  
of a Drosha orthologue. The 
extensive nature of the hairpins 
that lead to many plant miRNAs 
also permits phased production 
of multiple small RNA duplexes 
through sequential Dicing events, 
conceptually the plant version of 
long hairpin endogenous small 
interfering RNA (siRNA) 
precursors or miRNA polycistrons 
in animals. a | Usually, consecutive 
Dicing proceeds from the base of 
the stem–loop. The secondary 
structure of the primary miRNA 
(pri-miRNA) flanking the mature 
miR:miR* duplex is important for 
proper and efficient processing, 
analogous to the proposed role  
of the ‘basal stem’ of animal 
pri-miRNAs156–159. Accurate 
processing depends on a region 
of imperfect pairing (junction 
between ssRNA and dsRNA) 
approximately 15 nucleotides (nt) 
from the miR:miR* duplex 
(towards the free end of the 
stem-loop), which localizes 
DICER-LIKE 1 (DCL1) to its initial 
cleavage site. This liberates an 
intermediate similar to animal 
precursor miRNAs (pre-miRNAs), 
which is further processed by 
DCL1 into the mature miR:miR* 
duplex. b | Variations in 
processing mechanisms are 
possible. For example, miR319 
and miR159 (both with conserved 
long precursors) are produced by 
an unusual loop-to-stem 
mechanism. Following the first 
cleavage of the loop by DCL1, 
consecutive cuts by DCL1 are 
necessary to release the mature 
miRNA duplex160. CBC, 
cap-binding complex; DDL, 
DAWDLE; HEN1, HUA ENHANCER 1; 
HYL1, HYPONASTIC LEAVES 1; 
SE, SERRATE.
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unlinked loci. One example of the latter type of siRNAs 
are endo-siRNAs that target transposons, which seem to 
arise at least in part from the hybridization of transposon 
mRNAs with piRNA cluster transcripts. Another possible 
source of dsRNA hybrids is the interaction of sense and 
antisense transcripts across individual transposon cop-
ies, and it has even been suggested that RdRPs may oper-
ate in animals to form dsRNAs78. As with exo-siRNAs,  
the biogenesis of endo-siRNAs depends on Dicer 2 
assisted by LOQS-PD42,73,75–77.

A similar situation has been described in mammals; 
however, the range of cell types in which dsRNAs are pro-
duced and converted into siRNAs seems to be limited. 
Thus far, endo-siRNAs have been detected in abundance 
only in mouse oocytes and embryonic stem (ES) cells79–81. 
The dsRNA triggers that give rise to murine endo-siRNAs 

are predicted to arise from trans interactions between 
gene and pseudogene transcripts, from overlapping tran-
scription units and from transcripts that can form long 
hairpins. As in flies, endo-siRNA biogenesis is dependent 
on Dicer and, presumably, its dsRBD partners.

RdRP-dependent siRNAs. In contrast to mammals and 
flies, worms and plants produce numerous endo-siRNAs 
using biogenesis mechanisms that depend on the action 
of RdRPs. Plant RdRPs copy single-stranded precursors 
into long dsRNAs that are cleaved by Dicer, whereas 
worm RdRPs can directly synthesize siRNAs without 
Dicer processing.

Primary siRNAs in Caenorhabditis elegans are pro-
duced conventionally, from long dsRNA triggers through 
the action of DCR-1 (REFS  33,35,82)(FIG. 2b). The siRNAs  

Figure 2 | Production of small interfering RNAs. a | In flies, perfect or nearly perfect dsRNA precursors of varying 
origin and structure are processed in the cytoplasm by the RNase III enzyme Dicer 2 (DCR2) and its co-factor, an 
isoform of Loquacious (LOQS-PD), to yield small interfering RNA (siRNA) duplexes that contain guide and passenger 
strands. b | Caenorhabditis  elegans primary siRNAs are processed from long dsRNA triggers through the action of 
DCR-1. These primary siRNAs associate with the Argonaute family protein, RDE-1, and guide it to target transcripts. 
The RDE-1–target interaction recruits an RNA-dependent RNA polymerase (RdRP), which uses the target as template 
for the de novo synthesis of secondary siRNAs that feature 5  triphosphate ends (see main text for further details).  
c | The production of Arabidopsis thaliana trans-acting siRNAs (ta-siRNAs) requires the interplay of canonical 
components of the microRNA (miRNA) and siRNA biogenesis machineries. The process is triggered by miRNA-mediated 
cleavage of non-coding TAS transcripts by miR390–AGO7 or miR173–AGO1, respectively. Slicing triggers the 
recruitment of SUPPRESSOR OF GENE SILENCING (SGS3) and RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), which 
synthesize dsRNA using the cleavage site as the entry point. The resulting dsRNA is processed by DICER-LIKE 4 (DCL4) 
and its dsRBD protein partner DRB4 into a phased series of 21-nucleotide (nt) siRNA duplexes. ta-siRNAs are 
methylated by HUA ENHANCER 1 (HEN1) before AGO loading.
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Trans-acting siRNA
A plant small RNA that 
primarily associates with 
AGO2. ta-siRNA biogenesis 
depends on miRNA-mediated 
cleavage of precursors that are 
further processed by DCL4 and 
other siRNA machinery factors.

Natural antisense 
transcript-derived siRNA
A stress-induced small RNA 
produced by DCL1 and DCL2 
that originates from dsRNA 
formed by convergent 
transcription.

associate with the Argonaute family protein, RDE-1 and 
guide it to target transcripts. The RDE-1–target interac-
tion recruits an RdRP, an outcome that is independent 
of RDE-1 catalytic activity83. The RdRP uses the target 
as template for the synthesis of secondary siRNAs of  
22– 24 nt. Secondary siRNAs possess triphosphates at 
their 5  ends, indicating that each small RNA is produced 
as a discrete moiety by de novo synthesis6,7.

The production of most plant siRNAs requires 
the action of RdRPs to convert ssRNA precursors to 
dsRNA triggers. Three major subclasses of endogenous  
siRNAs can be distinguished in plants: trans-acting siRNAs  
(ta-siRNAs), natural antisense transcript-derived siRNAs 
(nat-siRNAs) and heterochromatic siRNAs (hc-siRNAs). 
Each of these small RNA subclasses is produced by a 

specific Dicer family member and preferentially loaded 
into a distinct AGO complex.

The biogenesis of ta-siRNAs requires the interplay of 
canonical components of miRNA and siRNA process-
ing84–90 (FIG. 2c). The process begins with miRNA-mediated  
cleavage of the TAS1 or TAS3 non-coding RNAs by 
miR390–AGO7 or miR173–AGO1, respectively. This 
triggers the recruitment of SUPPRESSOR OF GENE 
SILENCING 3 (SGS3) and RNA-DEPENDENT RNA 
POLYMERASE 6 (RDR6), which synthesizes dsRNA 
using the cleavage site as the entry point. The result-
ing dsRNA is processed by DCL4 and its dsRBD pro-
tein partner DRB4 into a phased series of 21-nt siRNA 
duplexes, which begins at the site of initial cleavage. 
ta-siRNAs are methylated by HEN1 before AGO load-
ing. The subcellular localization of biogenesis factors 
and RNA intermediates, along with the recruitment 
of SDE5 (a putative export factor homologue), sug-
gests that ta-siRNA biogenesis might involve specific  
nuclear–cytoplasmic shuttling3,91.

Plant genomes often possess convergent transcrip-
tion units that can give rise to dsRNA. Under certain 
conditions, often resulting from biotic and abiotic stress, 
bidirectional transcription is induced and the resulting 
dsRNA is processed into nat-siRNAs92–94. Production 
of nat-siRNAs requires  DCL2 (which produces 24-nt 
siRNAs) or DCL1 (resulting in 22-nt siRNAs), depend-
ing on the genomic origin of the overlapping transcripts. 
Other essential biogenesis factors include RDR6, SGS3, 
HYL1, HEN1 and RNAPIV92,93.

A highly abundant class of plant endo-siRNAs — 
hc-siRNAs — arises from repeats and transposable 
elements95–101. hc-siRNAs are predominantly 24 nt in 
size and their biogenesis, which is thought to occur  
in nucleolar bodies, depends on DCL3, its partner 
protein CLASSY1 (a SNF2 domain protein), the RdRP 
RDR2 and the plant-specific DNA-dependent RNA 
polymerases RNAPIV and RNAPV. Processed siRNA 
duplexes are methylated by HEN1 and primarily loaded 
into AGO4.

Small RNA sorting
Once produced, small RNAs and, in many cases, specific 
small RNA strands must be loaded into Argonaute pro-
teins. Sorting is influenced by the Dicer that processes 
the precursor, the structure of the small RNA duplex, its 
terminal nucleotides, its thermodynamic properties and 
the destination AGO protein (see BOX 2 for structural 
properties of AGO proteins).

In part, sorting may be driven by specific protein–
protein interactions between biogenesis and effec-
tor components. For example, in animals, Dicing and 
Argonaute loading have been proposed to occur as 
concerted processes102,103. This provides an opportunity 
for determining the fate of specific precursors to join 
certain effector complexes if a particular Dicer prefer-
entially binds one Argonaute family member. However, 
Dicer and Argonaute cannot be the full story. Instead, it is 
clear that more complex-loading and strand-recognition  
pathways also influence the sorting of small RNAs. To 
exert its regulatory functions, mature RISC must be 

Box 2 | Structural determinants of Argonaute proteins for small RNA sorting

Argonaute (AGO) proteins provide numerous possibilities for RNA–protein 
interactions that might underlie the proposed determinants of small RNA strand 
sorting. The interaction between AGOs and small RNAs occurs through several contact 
points in three characteristic domains of the protein: the PAZ, Mid and PIWI domains  
(a and b; part b shows a stereo view of the crystal structure of Thermus thermophilus 
AGO bound to a guide DNA–target RNA duplex161).

The PAZ domain hosts the 3  end of the small RNA162,163, whereas the Mid domain 
forms a binding pocket that anchors the 5  phosphate of the terminal nucleotide of  
the small RNA111,161,164–167. These interactions provide opportunities for base-specific 
contacts that might provide preferences for 5  nucleotides or might encourage the 
loading of duplexes with unstable 5  ends. Whereas plant, fly and worm microRNAs 
(miRNAs) show a strong tendency to start with U, human miRNAs are biased towards U 
or A as 5  terminal nucleotides73,76,106–109,111,112. Recent work provides structural evidence 
for nucleotide-specific interactions in the Mid domain of human AGO2 that ensure  
the preference for a 5  terminal U (or A), while excluding G or C through a nucleotide 
specificity loop111. Interestingly, this structure is well conserved in all four human AGO 
proteins as well as in Drosophila melanogaster AGO1 or the worm miRNA acceptors 
ALG-1 and ALG-2. By contrast, AGO proteins that function in other small RNA 
pathways, such as D. melanogaster AGO2 or plant AGOs, lack this nucleotide specificity 
loop111. Whether the region corresponding to the nucleotide specificity loop in these 
distant proteins contributes to sorting of small RNAs, depending on the 5  nucleotide 
or not, awaits further structural investigation.

The PIWI domain, which shows similarity to RNase H folds, harbours the residues 
required for catalytic activity (in AGO protein usually Asp–Asp–His). Thus, 
cleavage-competent AGO proteins carry out endonucleolytic cleavage of target 
transcripts through their PIWI domain164,168–170. Cleavage products of AGO enzymes 
feature 3  hydroxyl and 5  phosphate ends171,172.

Panel b is reproduced from REF. 161  (2008) Macmillan Publishers Ltd. All rights reserved.
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Heterochromatic siRNA
A highly abundant plant  
small RNA that arises from 
transposons and repeats. 
hc-siRNAs depend on DCL3 
and mainly load into AGO4.

RNase H
A conserved family of 
endonucleases that cleave  
the RNA strand of RNA:DNA 
hybrid duplexes. AGO proteins 
contain RNase H-like domains.

programmed with a single-stranded RNA. Thus, for 
small RNAs that are initially produced as duplexes, one 
strand must be chosen and the other discarded — a proc-
ess called RISC loading. Strand selection must not be 
random. For example, for most miRNAs, evolutionary 
pressure has honed one particular strand of the duplex 
as a crucial regulator and loading of the other strand, the 
miR*, would cause silencing of the wrong set of genes.

Even from the first mechanistic studies, it was clear 
that strand choice was partly encoded in the intrinsic 
structure of the small RNA duplex, and a major deter-
minant resides in its thermodynamic properties104,105. 
For both miRNAs and siRNAs in flies and mammals, the 
strand with the least stable 5  end is more often retained. 
There are also additional favourable sequence charac-
teristics, such as a bias for a U at position 1 (see BOX 2 for 
further details)73,76,106–110. Recently, our understanding of 
small RNA-sorting determinants has expanded substan-
tially, and Argonaute and RNA structural studies have 
begun to provide a mechanistic basis for observations 
from in vitro and in vivo analyses90,106,107,110–112.

Small RNA sorting in animals. In mammals, a sin-
gle Dicer assorts siRNAs and miRNAs among four 
Argonaute subfamily proteins, apparently without much 
discrimination. However, in D. melanogaster, two distinct 
Dicer proteins process small RNA duplexes that prefer-
entially enter AGO1 or AGO2 complexes. Generally, 
AGO1 is occupied by miRNAs, whereas AGO2 associ-
ates with siRNAs. This parallels the processing of miR-
NAs by Dicer 1 and siRNAs by Dicer 2. However, there 
are exceptions to the rule. For example, there are Dicer 
1-derived small RNAs that preferentially load AGO2, 
implying the existence of a post-processing sorting 
mechanism107,113. Although miRNA and siRNA process-
ing intermediates are approximately 19–21-nt duplexes 
with 2-nt 3  overhangs, the character of their duplexed 
portions substantially differs (FIG. 3a). siRNAs are derived 
from duplexes featuring perfect or nearly perfect dsRNA, 
whereas miRNAs originate from precursors that typi-
cally contain several mismatches or bulges. Other fea-
tures that affect sorting include the terminal nucleotides 
and thermodynamic properties of the duplex ends.

The numerous inputs into the sorting decisions 
of small RNAs have posed a challenge to predicting 
their fates in D. melanogaster. However, recent studies  
have suggested the application of hierarchical rules to 
predict differential AGO loading106,107,110. At the top 
level is duplex structure, specifically its degree of base 
pairing. Small RNA strands with unpaired central 
regions (~nucleotides 9–10) tend to be directed into 
AGO1 and disfavoured for AGO2 loading. Although  
D. melanogaster AGO1 and AGO2 show different prefer-
ences for terminal nucleotides (AGO1 favours a terminal 
U, whereas AGO2 shows a bias towards a 5  C)76,106,107, the 
identity of the 5  nucleotide only makes a minor con-
tribution to sorting107. For perfect duplexes, thermo-
dynamic asymmetry dominates strand choice, which is 
precisely as was originally proposed104,105,107.

It should be noted that sorting is a strand-centric 
process. Once a duplex is made, it seems that one strand is 

assessed and its fate determined. Thus, for many miRNAs,  
miR strands are abundant in AGO1 complexes and miR* 
strands predominate in AGO2–RISC; however, these 
miR and miR* strands arise from independent precur-
sor molecules rather than through the stabilization of 
both strands of a given duplex. Thus, for each processed 
duplex, the choice seems to be whether the miR strand 
becomes committed to AGO1 or the miR* is commit-
ted to AGO2, with the complementary strand of each 
miRNA duplex being discarded during RISC matura-
tion. Thus, AGO1 and AGO2 may compete for the selec-
tion of strands from each duplex, with the strength of 
preferential loading signals determining the ultimate 
abundance of the miR and miR* in AGO1 and AGO2 
complexes, respectively106,107,110.

It was recently noted in D. melanogaster that some 
hairpin-derived endo-siRNAs accumulate in AGO2 
even though they originate from mismatched duplexes 
and have a terminal U — features which are thought 
to direct them towards AGO1 (REF. 114). Interestingly, 
in vitro, these small RNAs are sorted into AGO1. In vivo, 
however, these AGO1-loaded endo-siRNAs silence tar-
gets with high sequence complementarity. This paradox 
can be resolved by invoking target-directed small RNA 
destruction; small RNAs of this sort may be loaded into 
AGO1 in vivo, but they are unstable owing to lack of the 
stabilizing 2 -O-methylation, which they acquire when 
loaded into AGO2.

As in D. melanogaster, worm miRNAs and siRNAs 
are partitioned among distinct AGO subfamily proteins. 
Although worm sorting rules have not been probed in 
detail, miRNAs show a tendency towards central mis-
matches and are sorted into ALG-1 or ALG-2, whereas 
siRNAs from perfect duplexes preferentially load RDE-1 
(REFS 115,116). In contrast to flies and worms, individual 
mammalian AGO clade proteins show no specialized 
structural and 5  nucleotide preferences for small RNA 
duplexes117–119. This raises the possibility that mammals 
lack a strict system for small RNA sorting, at least among 
their AGO subfamily members.

Sorting of small RNAs in plants. A. thaliana encodes 
ten Argonaute proteins, which vary in their degrees of 
specialization and expression patterns. As in animals, 
plant AGO proteins tend to show preferences for dis-
tinct small RNA classes, which are produced through 
somewhat compartmentalized biogenesis pathways. 
For example, AGO1 is manly occupied by miRNAs that 
arise through processing by DCL1. AGO4 prefers hc-
RNAs that are processed by DCL3. AGO2 is the princi-
pal recipient for ta-siRNAs. An additional complexity 
is that different Dicers produce small RNAs of distinct 
sizes. Plant DCL1 and DCL4 produce 21-nt RNAs, 
DCL2 22-nt RNAs and DCL3 24-nt RNAs. Different 
Dicer proteins have also been proposed to reside in dif-
ferent subcellular compartments. Thus, a wide range 
of properties might be exploited to establish specificity 
in plant small RNA sorting. Surprisingly, although the 
terminal nucleotide of the siRNA had a minor effect 
on sorting in flies and mammals, it strongly impacts 
sorting in plants.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 12 | JANUARY 2011 | 25

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.uniprot.org/uniprot/Q7KY08
Charlotte Cialek


Charlotte Cialek


Charlotte Cialek


HTTP://WWW.UNIPROT.ORG/UNIPROT/Q9VUQ5


2

2

2

2 7

%

�7��EGPVTCN�OKUOCVEJGU

�%��RGTHGEV�FU40#

1*

1*
*1

*1

C

&%4� 4�&� #)1�

#)1�

#)1�

#)1�

#)1�

#)1�

*52��
FKUUQEKCVKQP

*52��
FKUUQEKCVKQP

*5%��s*52��
EJCRGTQPG

*5%��s*52��
EJCRGTQPG

UK40#
FWRNGZ

2CUUGPIGT
UVTCPF
ENGCXCIG

%�21

/CVWTG�#)1�s4+5%/CVWTG�#)1�s4+5%

*'0�

5#/

5#*

#62

#62

&GITCFCVKQP
QH�ENGCXCIG
RTQFWEVU

/GVJ[NCVKQP

&WRNGZ
NQCFKPI

4+5%�
NQCFKPI
EQORNGZ

#62
J[FTQN[UKU

E

%QPHQTOCVKQPCN
EJCPIG�nQRGPKPIo

OK40#
FWRNGZ&WRNGZ

NQCFKPI

#62
J[FTQN[UKU

2CUUKXG
WPYKPFKPI

D

#)1�
FWRNGZ

#)1�
FWRNGZ

� �1%*�

0CVWTG�4GXKGYU�^�)GPGVKEU

Deep sequencing of small RNAs associated with AGO  
family members clearly indicated that distinct  
AGO proteins preferentially load small RNAs with spe-
cific 5  nucleotides90,112,120,121. AGO1 showed a strong 
bias towards a terminal U. AGO2 and AGO4 selected 
sequences that begin with an A, and AGO5 mainly 
bound RNAs starting with a 5  C. Simply changing the 
terminal nucleotides could redirect small RNAs into 
different complexes in a predictable manner, strongly  
supporting the dominance of this sorting signal.

There were exceptions to the simple rule proposed 
above. MiR390, which begins with an A, would be 
predicted to load AGO2 but, instead, exclusively occu-
pied AGO7 (REF. 90). Moreover, miR390 could not be 
redirected by altering its terminal base. Thus, although 
base recognition contributes strongly to sorting, other 
characteristics of small RNAs must also be taken into 
account. These could include duplex properties, such 
as thermodynamic asymmetry or degree of base pair-
ing, although this hypothesis has yet to be examined. 
Overall, the data support a model in which plant small 
RNAs dissociate following Dicer cleavage and are sub-
ject to a sorting process, which surveys their terminal 
base. Other considerations, their size and the Dicer that 
produced them may contribute to specificity in a man-
ner that varies with the small RNA species, but which 
becomes the dominant determinant of sorting in a  
few instances.

Sorting of other small RNA classes. To date, we know 
far more about the loading determinants of miRNAs 
and siRNAs than of any other small RNA class. Even 
within these well-studied groups, there are exceptions 
to the rules outlined above. For example, several reports 
now support the idea that pre-miRNA hairpins can be 
successfully loaded into RISC118,122–126 (BOX 3). Mirtrons 
bypass the Drosha step but are presumably loaded using 
the normal miRNA strand determinants following  
Dicer cleavage.

Several small RNA classes are formed without a double- 
stranded precursor. Even though this should pose a sim-
pler sorting problem, with no need to discriminate guide 
versus passenger strands, we know little about how these 
species are selectively loaded into specific Argonautes. 
Among good examples are the secondary siRNAs in 
worms, which are generated as direct RdRP products, 
presumably without the need for further process-
ing6,7. These are specifically loaded into WAGO clade 
Argonautes through a still mysterious mechanism9. One 
could easily imagine that biogenesis and loading could 
be tightly coupled, or that the 5  triphosphate termini 
on these small RNAs could contribute to binding spe-
cificity through interactions with the mid-domain of the 
Argonaute, but these ideas remain to be tested.

piRNAs, including worm 21U RNAs, do not depend 
on Dicer processing and are thought to originate from 
single-stranded precursors4,5,8,127,128. The loading of 
these small RNAs into Piwi subfamily proteins and the 
requirements of associated partner proteins for proper 
Piwi–RISC assembly are unknown. Whether the strik-
ing bias for a terminal U seen in many piRNAs reflects 

Figure 3 | Small RNA sorting and RNA-induced silencing complex assembly in flies. 
a | Structural determinants dominate the decision to sort small RNAs into fly 
Argonaute 1 (AGO1) or AGO2. AGO1-biased (usually microRNA (miRNA)) duplexes 
contain several bulges and mismatches, especially in the central region of the duplex. 
Mature miR strands show a strong bias for a terminal U. By contrast, AGO2-biased 
(usually siRNA) duplexes show extensive base pairing. Loaded guide strands often 
start with C. b | Unloaded AGO1 is recognized and bound by the heat shock cognate 70 
(HSC70)–heat shock protein 90 (HSP90) chaperone complex and, following binding  
of ATP, adopts an ‘open’ conformational state. Loading-competent AGO1 receives 
miRNA duplexes containing several mismatches. The incorporation of duplexes into 
AGO1 is likely aided by as yet unidentified loading factors. ATP hydrolysis results in 
dissociation of the chaperone complex from AGO1, followed by passive unwinding  
of the duplex, a process promoted by mismatches. The miR* strand is degraded 
following unwinding. c | The HSC70–HSP90 chaperone complex associates with 
unloaded AGO2. Binding of ATP to the chaperone complex leads to conformational 
changes that allow AGO2 to receive small duplexes from the AGO2-loading 
machinery. Small RNA duplexes with perfect or near-perfect base-pairing (especially 
those with good pairing in the central region) are recognized by Dicer 2 (DCR2)  
and its co-factor R2D2 (AGO2–RISC-loading machinery) and inserted into AGO2.  
The chaperone complex dissociates following ATP hydrolysis, causing a change in the 
conformation of AGO2. Following passenger strand slicing by AGO2, component  
3 promoter of RISC (C3PO) degrades the cleavage products. Subsequently, the 3  
terminus of the guide strand is methylated by HUA ENHANCER 1 (HEN1) to yield 
mature AGO2–RISC. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.
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upstream processing activities or is a consequence of the 
nucleotide-binding preferences of these Piwi proteins  
(as is seen in plants) remains unclear.

The RISC-loading machinery
Small RNA duplexes cannot be efficiently incorporated 
into AGO proteins without assistance from additional 
proteins118,119. These factors are also known as the RISC-
loading machinery (or pre-RISC) and their precise 
nature differs for distinct AGO proteins. RISC loading 
is an active process that requires ATP118,129–132, probably 
owing to the necessity to drive conformational changes 

so that AGO proteins accept small RNA duplexes. 
This concept, which was originally suggested based on 
structural analyses of AGO proteins, has gained recent 
support from studies that characterized interactions 
between Argonautes and the heat shock cognate 70 
(HSC70)–heat shock protein 90 (HSP90) chaperone 
complex133–136. These studies support a model in which 
the interaction between Argonautes and the chaperone 
complex creates an ‘open’ conformation that is suitable 
for the loading of duplexed small RNAs. ATP hydrolysis 
and dissociation of the chaperone results in a structure 
that can discard or cleave the miR* or passenger strand 
to form an active RISC.

In flies, the loading machinery for AGO2–RISC 
also involves Dicer 2 and its dsRBD partner R2D2 

(REFS 68,69,130,131,137,138) (FIG. 3c). In fact, these fac-
tors have been proposed to be the biochemical sensors 
for thermodynamic asymmetry. In this regard, R2D2 has 
been shown to bind the more stable end of the dsRNA 
duplex, whereas Dicer 2 is positioned at the less-stable 
end of the duplex, providing a mechanism for orien-
tated AGO2 loading139. Although a minimal pre-RISC 
could be constituted with only Dicer 2, R2D2 and AGO2 
(REF. 140), the bona fide AGO2–RISC-loading machinery 
in vivo undoubtedly contains additional components, 
including the chaperone complexes described above. 
Roles for Dicers have also been suggested for AGO1 
loading. One report suggests that AGO1–Dicer 1 com-
plexes correspond to the AGO1–RISC-loading com-
plex141, whereas a second report indicated that Dicer 1 
was dispensable for AGO1–RISC assembly132.

Although little is known about the loading machin-
ery in plants, a recent study proposed that the thermo-
dynamic properties of duplex ends (instead of terminal 
nucleotides) are the dominant determinant for strand 
selection of some DCL1-processed miRNAs and that 
HYL1, like fly R2D2, functioned as a component of the 
asymmetry sensor66.

RISC maturation
For RISC to exert its function, pre-RISC needs to mature 
(FIG. 3c). Although the orientation of the miRNA duplex 
was determined during RISC assembly and loading, the 
crucial maturation step is discarding of the passenger 
or miR* strand. In flies and mammals, distinct AGO 
proteins seem to achieve this by different mechanisms, 
which depend on the nature of the AGO protein and 
the degree of base pairing in the loaded duplex. Using 
their ‘slicer’ activity, fly or mammalian AGO2 can 
cleave the passenger strand of perfect or nearly perfect 
duplexes12–14. The cleaved strand dissociates from RISC 
and, in flies, is degraded by a multimeric endonuclease 
complex (consisting of Translin and Trax), termed C3PO 
(component 3 promoter of RISC)140. Following passen-
ger strand removal, AGO2-bound single-stranded small 
RNAs are methylated at their 3  termini by the methyl-
transferase HEN1 (also known as Pimet) to yield mature 
AGO2–RISC142,143.

Maturation of miRNA RISC is less well understood 
(FIG. 3b, bottom). Human AGO1, AGO3 and AGO4 
all lack slicer activity and fly AGO1 is a poor slicer. 

Box 3 | Non-canonical biogenesis and loading of small RNAs

It had been reported in the literature that precursor-microRNA (pre-miRNA) hairpins are 
sometimes directly loaded into RNA-induced silencing complex (RISC) instead of being 
funnelled into the canonical Dicer-dependent biogenesis pathway118,125,126. Recently, it 
was shown that this strategy is actually used as a biogenesis mechanism by a conserved 
vertebrate miRNA, miR-451 (REFS 122–124). Like other endogenous miRNAs, mir-451 is 
synthesized by RNA polymerase II (RNAPII) as a polycistronic transcript together with 
mir-144 (see the figure above). This primary miRNA (pri-miRNA) is initially processed by 
the Microprocessor (Drosha–Pasha complex) through the canonical biogenesis pathway. 
However, following export to the cytoplasm, the two pre-miRNAs adopt distinct fates. 
Although pre-mir-144 continues along the canonical miRNA path and is processed  
by Dicer, pre-mir-451 is not a Dicer substrate, perhaps because its 17-nucleotide 
(nt)-duplexed region is too short. Instead, the pre-mir-451 hairpin is directly loaded  
into Argonaute 2 (AGO2). There, the duplexed portion of the hairpin is cleaved by the 
Argonaute RNase H-like motif and the cleaved product is resected by an unknown 
activity to form mature miR-451. Although it is unclear whether pre-mir-451 is actively 
sorted into AGO2, only those species which occupy this catalytically competent AGO 
family member can mature.

As a second example, the pre-miRNA equivalents for mirtrons are formed by the 
splicing machinery rather than by Drosha. Their biogenesis is outlined in FIG. 1.
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Seed region
A region consisting of 
nucleotides 2–8 counted from 
the 5  end of miRNAs that 
participates in the interaction 
between a small RNA and 
target transcript.

Moreover, miRNA duplexes often contain sufficient 
bulges to prevent slicing of miR* strands even by com-
petent enzymes. Therefore, it has been proposed that 
miR* strands dissociate in a cleavage-independent man-
ner by unwinding — a process that is facilitated by the 
presence of mismatches in the loaded duplexes113,118,132. 
Biochemical evidence supports unwinding as a passive, 
ATP-independent process, with degradation of the miR* 
strand on its release. It is unclear how plant Argonautes 
remove the miR* or passenger strand during RISC mat-
uration. MiR* and passenger strands could be cleaved 
through the slicer activity of AGOs (similar to fly AGO2) 
or unwound passively (like fly AGO1)12–14,132.

The impact of sorting on target regulation
The ultimate result of accurate strand selection and sort-
ing is that an active RISC is formed, which is imbued 
with the ability to regulate a target gene or process. 
Argonaute family members differ in their biochemical 
properties, subcellular localization and expression pat-
terns, and matching the right small RNA with the correct 
partner is key to proper biological function.

Although AGO proteins evolved as ribonucleases, 
animal miRNAs affect their targets without the need for 
this activity. miRNAs generally interact with their tar-
gets through limited base-pairing interactions that are 
insufficient to place the scissile phosphate of the target 
in the enzyme active site where cleavage can occur. The 
prevalence of cleavage-independent repression modes 
is also reflected in the diversity of the Argonaute family. 
In mammals, three of the four AGO proteins have lost 
catalytic potential, and AGO1, the D. melanogaster AGO 
protein into which most miRNAs are sorted, is a poor 
enzyme compared with its siRNA-binding cousin113.

miRNA-directed target cleavage has only been 
reported in a few cases144,145. However, this is assumed 
to be the principal regulatory mode for endo-siRNAs 
and for piRNA-mediated repression of transposons. 
Here again, the choice of a particular AGO partner is 
crucial. Piwi family members all retain catalytic compe-
tence and D. melanogaster AGO2, the main partner for 
endogenous and viral siRNAs, is tuned for highly active 
slicing (BOX 4).

AGO1-associated plant miRNAs usually share exten-
sive sequence complementary with their mRNA targets 
and these interactions often result in target cleavage146. 
However, recent studies have indicated that cleavage-
independent translational repression is widespread in 
plants, even for highly complementary target sites147. 
Nevertheless, miRNA-mediated cleavage is of key 
importance for some processes like the biogenesis of ta-
siRNAs, for which the initial slicing event is key to RdRP 
recruitment and dsRNA synthesis88.

Notably, small RNAs that direct cleavage, for exam-
ple, plant miRNAs, piRNAs and fly endo-siRNAs, often 
have a 2 -O-methyl modification on their 3  termini. 
Although the purpose of this modification was initially 
mysterious, it is now clear that this functions as a pro-
tective group to prevent small RNA destruction64,142,143. 
In flies and mammals, small RNAs that have extensive 
complementarity to their targets can be recognized by 
terminal uridyl transferases, which mark small RNAs 
for degradation64. The uridylation event is blocked by 
the 2 -O-methyl modification, preserving these small 
RNAs, which have evolved to function through cleav-
age64. The balance between protection and targeted 
destruction has been proposed as a quality control on 
small RNA sorting and as an evolutionary mechanism 
to drive animal miRNAs toward a cleavage-independent 
repression mode64.

hc-siRNAs are thought to function by different 
mechanisms148,149. They must be sorted into a particu-
lar Argonaute, AGO4, which they guide to target DNA 
loci by base pairing with nascent non-coding transcripts 
synthesized by RNAPV. Effector proteins, such as the 
chromatin-remodelling factor DRD1, the de novo meth-
yltransferase DRM2 and other factors, are then recruited, 
resulting in DNA methylation at cytosine residues150,151. 
As this regulation functions by repressing RNA synthe-
sis, it was termed transcriptional gene silencing to distin-
guish it from post-transcriptional gene-silencing modes. 
Some piRNAs in flies and mammals must associate with 
particular Piwi-family proteins — that is, PIWI and 

Box 4 | Mechanisms of target regulation in Drosophila melanogaster

Individual Argonaute (AGO) proteins differ in their expression patterns, subcellular 
localization and enzymatic properties. Thus, distinct AGOs can function through many 
different effector modes that may involve slicing of target transcripts, cleavage-inde-
pendent regulation and chromatin modification (reviewed in REFS  15–17). Another 
layer of complexity is added by the degree of sequence complementarity between the 
AGO-bound small RNA and target transcripts, which determines the mechanism  
of regulation. a | In flies, AGO1-associated microRNAs (miRNAs) typically target 
mRNAs in their 3  UTRs to reduce protein synthesis. Owing to limited sequence 
complementarity between the small RNA (seed region) and the mRNA, such 
interactions usually do not result in direct cleavage of the targeted transcript. Instead, 
AGO1 and its partner protein GW182 are likely to disrupt crucial interactions between 
the polyA tail and the cap of the transcript, leading to  a reduction in translational 
initiation and an induction of mRNA decay173. In mammals, it was recently shown  
that reduced protein output is predominantly owing to destabilization of the target 
transcript174. b | Small RNAs bound to Drosophila melanogaster AGO2 do not exhibit  
a bias towards binding their targets in the 3  UTR. AGO2 primed with a small RNA 
sharing extensive complementarity with its target typically directs endonucleolytic 
cleavage of the mRNAs through  AGO2 slicer activity. The 2-O-methyl modification  
of AGO2-bound small RNAs prevents their degradation when targeting perfectly 
complementary transcripts64,142,143. However, other modes are possible: AGO2 can also 
regulate targets with limited sequence complementarity through a block in 
translation initiation (not shown)173. PABP, poly(A)-binding protein
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Box4: The overall outcomes of microRNA sorting:
How does it affect disease? Development? 
Stuff you said was important in the intro?  



MIWI2, respectively — which enable these small RNAs 
to enter the nucleus, where they are thought to induce 
transcriptional repression through changes in chroma-
tin structure or DNA methylation, respectively152–154. 
Similarly, worm NRDE-3, an Argonaute of the WAGO 
clade, transports siRNAs to the nucleus and functions 
through co-transcriptional gene silencing155.

Thus, the final effects of small RNA sorting are felt 
in the modes of repression that become available as 
they join specific AGO proteins. The consequences 
of improper sorting may range from a loss of target  
regulation to inappropriate regulatory modes.

Conclusions
An understanding of the mechanisms by which small 
RNAs are selected and sorted among different potential 
effector complexes is crucial. In part, this knowledge 

guides hypotheses concerning the cellular roles of an 
ever-growing roster of small RNA species. However, the 
ability to predict the fate of small RNAs based on their 
sequence and structural characteristics is also essential 
to their effective use as experimental tools and poten-
tial therapeutics. We have begun to piece together the 
properties that determine small RNA fates and, in some 
instances, these properties can even predict with reason-
able accuracy which small RNAs will efficiently join a 
particular effector complex. Yet, we still have a relatively 
poor ability to design effective small RNAs ab initio for 
experimental or therapeutic use. This capacity will rest 
on advances in both our understanding of RISC as an 
enzyme, including its mechanisms of target recognition, 
silencing and product release, and a detailed knowledge 
of how specific RNA strands are efficiently loaded into 
RISC as guides.
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