whole genome, one cell at a time

Explore Our Research





Embryos start out life as a single cell but quickly diversify into the bones, muscles, neurons, and skin that make up a plant or animal. How do these diverse cell types arise? Our lab is interested in how cohorts of genes orchestrate these developmental processes. In the process, we discover novel modes of genetic regulatory control.



We address biological questions using cutting-edge technologies like single-cell-resolution genomics and single-molecule imaging. Our research combines hypothesis-driven molecular experimentation and computational analysis. Researchers in our group are trained in genetics, molecular biology, and computational biology.



We use the microscopic nematode worm, Caenorhabditis elegans, as a genetic model. C. elegans are popular among researchers for their rapid and invariant embryonic development that can be viewed under the microscope over the course of a day. C. elegans were the first animal species to have their genome fully sequenced and are excellent for use in genome-wide studies. Furthermore, a large community of C. elegans researchers has worked together to develop resources that allow for precise genetic manipulation and experimentation. Because the characteristics and machinery of gene regulatory control are shared across animals, the things we learn in this worm model are relevant to human health.

Detailed Research Projects

Meet The Scientists

Steven Graham
Graduate Student

Andrew Moore
Undergraduate Researcher

Karissa Coleman
Undergraduate Researcher

Justin Ellis
Undergraduate Researcher

Trevor Stewart
Undergraduate Student

Nora Tayefeh
Undergraduate Researcher

Lab Group Photos

Located at Colorado State University

in beautiful Colorado!